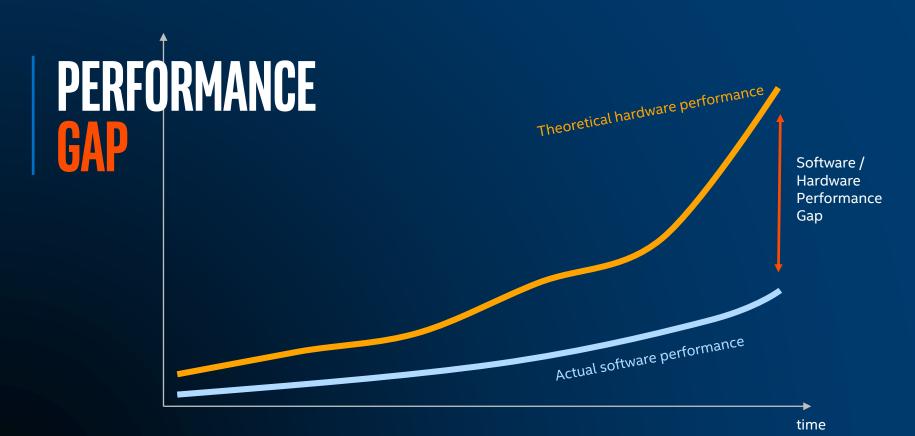


AIMEETS HPC IN A MULTI-ARCHITECTURE COMPUTING FUTURE: DEVELOP AND OPTIMIZE SOFTWARE FOR HETEROGENEOUS COMPUTING SYSTEMS

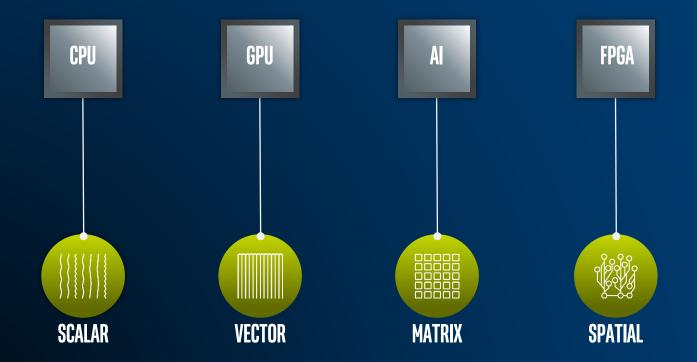
Ralph de Wargny - Intel Software

CODING WHY IS IT IMPORTANT?

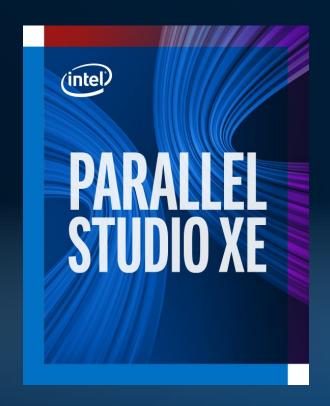
CODE DRIVES OUR LIVES



					7 8 8 8 8 8 8							
0 0 0 0		0 0 0 0 0		000000						0000000	0 0 0 0 0 0 0	
					9 0 0 0 0 0				9 9 9 9 9 9 9 9			
e e e e												
9 9 9 9									0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0000000		
0 0 0 0					1 0 0 0 0 0 0				9 0 0 0 0 0 0 0 0			
e e e e												
0 0 0 0	0000	00000	1 0 0 0 0 0		100000					000000	000000	
000												
e e e e	e e e e e									e e e e e e e		
e e e e												
e e e e									9 0 0 0 0 0 0 0			
					9 0 0 0 0 0			9 0 0 0 0 0 0				
000												
0 0 0											0 0 0 0 0 0 0	
0 0 0 0		00000	1 0 0 0 0 0 0		100000				9 0 0 0 0 0 0 0 0	000000		
						0 0 0 0 0 0 0						
e e e e	6 6 6 6					e e e e e e e e						
e e e e	0000											
0 0 0 0	00000		1 0 0 0 0 0 0		1 0 0 0 0 0 0	0000000			9 6 6 6 6 6 6 6 6	0000000	8 6 6 6 6 6 6	
e e e e												
0000	00000	0 0 0 0 0										0000000
0 0 0 0	00000	00000			1 6 6 6 6 6 6				9 9 9 9 9 9 9 9 9			
e e e e												
0 0 0 0			1 0 0 0 0 0 0		1 0 0 0 0 0 0	0000000						
											0 0 0 0 0 0 0	
0 0 0 0	0 0 0 0				100000	0000000	0000000	1 0 0 0 0 0 0		000000		
6 6 6 8			1 0 0 0 0 0 0		1 0 0 0 0 0 0	0000000			9 6 6 6 6 6 6 6 6	0000000	8 6 6 6 6 6 6	
0 0 0		6 6 6 6 6										
0 0 0 0										0000000	0 0 0 0 0 0 0	
0 0 0 0					1 0 0 0 0 0 0	0000000	0000000	1 0 0 0 0 0 0		000000		
0 0 0 0												
												
		0000										0 0 0 0 0 0
						0 0 0 0 0 0 0				0 0 0 0 0 0 0	e e e e e e e	0000000


CODING WHY IS IT IMPORTANT?

MAKE OUR CUSTOMERS SUCCESFUL!


TODAY CPU CENTRIC

POWER THROUGH PERFORMANCE BOTTLENECKS

Deliver faster, scalable, and portable parallel code For high-performance computiong (HPC), Enterprise, Cloud and AI.

- A comprehensive tool suite that simplifies creation and modernization of code on Intel® Xeon® Scalable & Core™ processors.
- It helps developers accelerate workloads with advanced vectorization, multi-threading, multi-node, and memory optimization techniques.

Who needs this product?

- OEMs/ISVs
- C/C++, Fortran, & Python* developers
- Developers, domain specialists of enterprise, data center/cloud, HPC & AI applications

Top 2019 New Features

- Improve application performance using OpenMP*—latest SIMDenabled hardware & Intel® AVX 512.
- Speed machine learning with new high performance Python*
- Use a new, intuitive user interface in Intel[®] VTune[™] Amplifier.
 Preview a platform profiler.
- Visualize parallelism with rapid visual prototyping in Intel® Advisor's Flow Graph Analyzer
- Extend HPC solutions on the path to Exascale with next gen Intel® MPI Library
- Supports industry standards & IDEs.

Free 30-Day Trial: software.intel.com/intel-parallel-studio-xe

WHAT'S INSIDE INTEL® PARALLEL STUDIO XE

COMPOSER EDITION

BUILD

Compilers & Libraries

Intel® Math Kernel Library

C / C++, Fortran Compilers

Intel® Data Analytics Acceleration Library

Intel Threading Building Blocks
C++ Threading

Intel® Integrated Performance Primitives
Image, Signal & Data Processing

Intel® Distribution for Python*
High Performance Python

PROFESSIONAL EDITION

ANALYZE

Analysis Tools

Intel® VTune™ Amplifier
Performance Profiler

Intel® Inspector

Memory, Thread & Persistence Debugger

Intel® Advisor

Vectorization Optimization Thread Prototyping & Flow Graph Analysis

CLUSTER EDITION

SCALE

Cluster Tools

Intel® MPI Library
Message Passing Interface Library

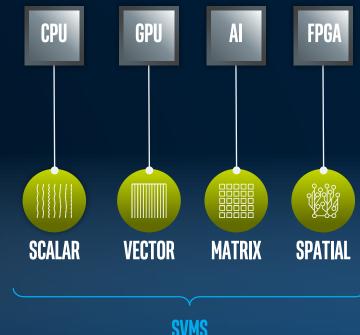
Intel® Trace Analyzer & Collector MPI Tuning & Analysis

Intel® Cluster Checker Cluster Diagnostic Expert System

Operating System: Windows*, Linux*, MacOS1*

Intel® Architecture Platforms

INTEL® PARALLEL STUDIO XE: HIGH PERFORMANCE, SCALABLE SOFTWARE ACROSS MULTIPLE INDUSTRIES


Energy	Schlumberger 10X									
EDA			Mentor Graphics	11X						
Science & Research	the Walker Molecular 4X Dynamics lab		*Novosibirsk State University HE REAL SCIENCE	8X Kyoto Uni						
Manufacturing	🛆 Altair 1.4	X	es	4X						
Government			AWE	25X						
Computer Software	FIXSTORS 2	.5X	FLOW Science	1.25X	Nik Software 1.3X					
IT	NEC	5X	(5).		PENCASCADE 2X					
Healthcare			MASSACHUSETTS GENERAL HOSPITAL	20X						
Digital Media	DreadWorks									
Telecommunications			ренір	2.5X						

View case studies details online.

Software & workloads used in performance tests may have been optimized for performance only on Intel microprocessors. Performance tests, such as SYSmark & MobileMark, are measured using specific computer systems, components, software, operations & functions. Any change to any of those factors may cause the results to vary. You should consult other information & performance tests to assist you in fully evaluating your contemplated purchases, including the performance on the performance of that product when combined with other products. For more information go to https://www.intel.com/performance. Optimization Notice: Intel's compilers may or may not to optimize to the same degree for non-Intel microprocessors for optimizations include SSE2, SSE3, and SSSE3 instruction sets and other optimizations. Intel does not guarantee the availability, functionality, or effectiveness of any optimization on microprocessors not manufactured by Intel. Microprocessor-dependent optimizations in this product are intended for use with Intel microprocessors. Certain optimizations not specific to Intel microarchitecture are reserved for Intel microprocessors. Please refer to the applicable product User and Reference Guides for more information regarding the specific instruction sets covered by this notice.

DIVERSE ARCHITECTURES

The future is a diverse mix of scalar, vector, matrix, and spatial architectures deployed in CPU, GPU, AI, FPGA and other accelerators

SVMS

INTEL® AI HARDWARE TODAY

OPTIMIZED FRAMEWORKS & SOFTWARE

AI SPECIALIZATION

WORKLOAD BREADTH

Multi-Purpose Foundation for Al Multi-Function & Real-time Deep Learning Inference

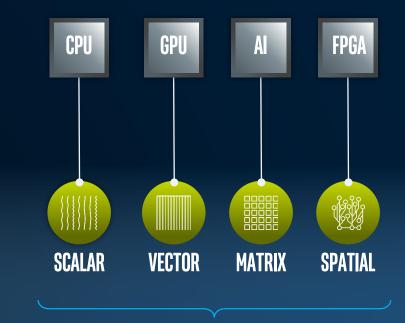
Inference

Deep Learning **Training**

Media & Vision DL Inference at the Edge

Data-Parallel Media, Graphics, HPC & AI

Deep Learning


PROGRAMMING CHALLENGE

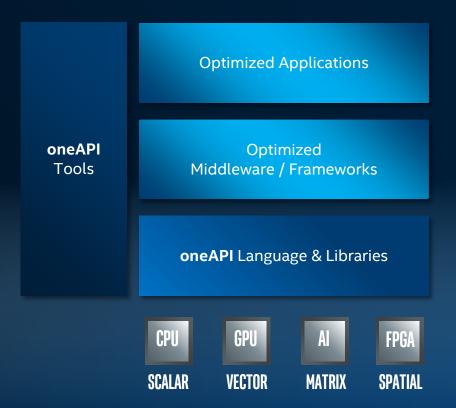
Diverse set of data-centric hardware

No common programming language or APIs

Inconsistent tool support across platforms

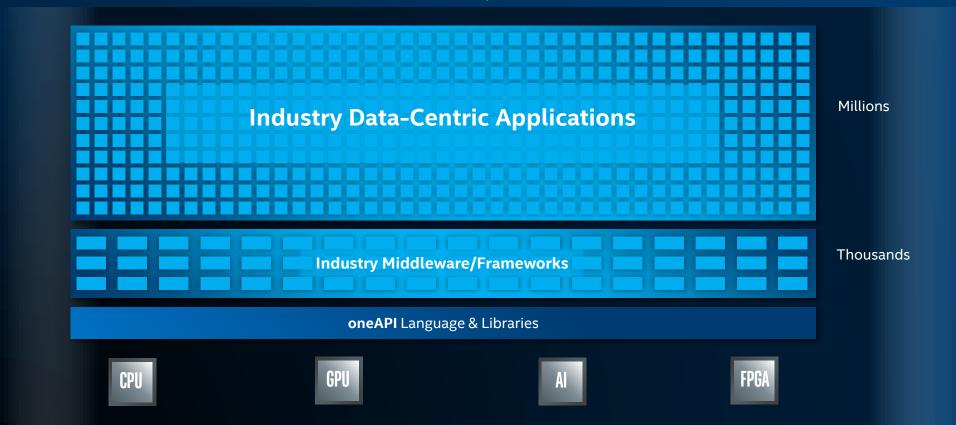
Each platform requires unique software investment

SVMS

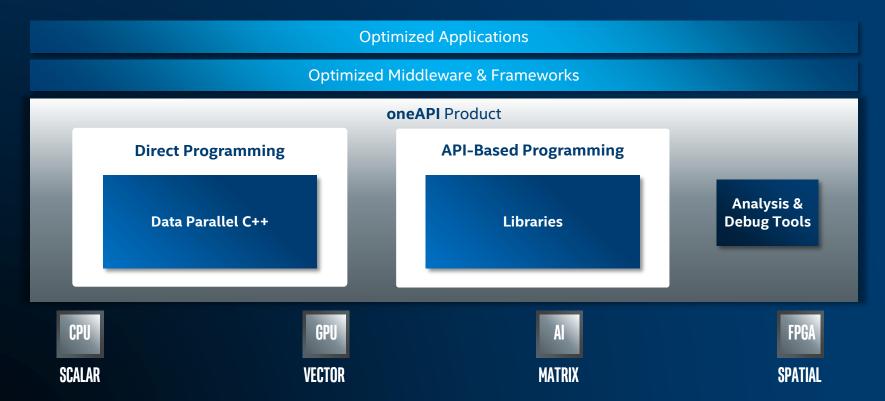

INTEL'S ONEAPI CORE CONCEPT

Project oneAPI delivers a unified programming model to simplify development across diverse architectures

Common developer experience across Scalar, Vector, Matrix and Spatial architectures (CPU, GPU, AI and FPGA)


Uncompromised native high-level language performance

Based on industry standards and open specifications



LOW LEVEL INTERFACE, LEVERAGED BY OTHERS

ONEAPI FOR CROSS-ARCHITECTURE PERFORMANCE

Some capabilities may differ per architecture.

БОЛЬШОЕ СПАСИБО!

NOTICES & DISCLAIMERS

This document contains information on products, services and/or processes in development. All information provided here is subject to change without notice.

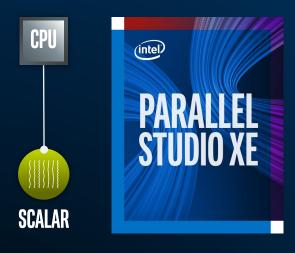
Intel technologies' features and benefits depend on system configuration and may require enabled hardware, software or service activation. Learn more at intel.com, or from the OEM or retailer.

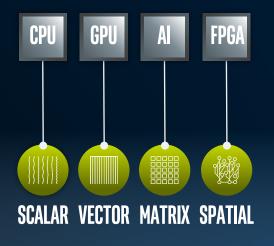
Copyright © 2019, Intel Corporation. All rights reserved. Intel, the Intel logo, Xeon, and VTune, are trademarks of Intel Corporation or its subsidiaries in the U.S. and other countries.

Optimization Notice

Intel's compilers may or may not optimize to the same degree for non-Intel microprocessors for optimizations that are not unique to Intel microprocessors. These optimizations include SSE2, SSE3, and SSSE3 instruction sets and other optimizations. Intel does not guarantee the availability, functionality, or effectiveness of any optimization on microprocessors not manufactured by Intel. Microprocessor-dependent optimizations in this product are intended for use with Intel microprocessors. Certain optimizations not specific to Intel microarchitecture are reserved for Intel microprocessors. Please refer to the applicable product User and Reference Guides for more information regarding the specific instruction sets covered by this notice.

Notice revision #20110804




SUMMARY

Diverse workloads for data-centric computing are driving the need for diverse compute architectures including CPUs, GPUs, FPGAs, and AI accelerators

OneAPI unifies and simplifies programming of Intel CPUs and accelerators, delivering developer productivity and full native language performance

OneAPI is based on industry standards and **open** specifications to encourage ecosystem collaboration and innovation

